
www.manaraa.com
COMMUNICATIONS OF THE ACM October 2003/Vol. 46, No. 10 29

The Web services framework intends to
provide a standards-based realization of the ser-
vice-oriented computing paradigm, which has
emerged in response to a fundamental shift in
the way enterprises conduct their business. Fully
integrated enterprises are being replaced by busi-
ness networks in which each participant provides
the others with specialized services. Traditional
IT infrastructures in which infrastructure and
applications were managed and owned by one
enterprise are giving way to networks of applica-
tions owned and managed by many business
partners. Standards and the pervasiveness of net-
work technologies provide the technology sup-
port for this trend.

This new computing environment defines a set
of requirements that distinguish SOC from other
computing paradigms. To operate in a SOC envi-
ronment, applications (“services”) must declara-
tively define their functional and nonfunctional
requirements and capabilities in an agreed,

By Francisco Curbera, Rania Khalaf, Nirmal Mukhi,
Stefan Tai, and Sanjiva Weerawarana

THE NEXT STEP IN
WEB SERVICES

How three specifications support creating
robust service compositions.

www.manaraa.com
30 October 2003/Vol. 46, No. 10 COMMUNICATIONS OF THE ACM

machine-readable format. Based on declarative ser-
vice descriptions, automated service discovery,
selection and binding become a native capability of
SOC middleware and applications. A consequence
of the dynamic binding capability is a looser cou-
pling model between applications.

A componentized model emerges as the natural
architecture for the SOC model. Services become
the basic building blocks out of which new
applications are created,
and service composition
becomes the main con-
cern of the application
development process.
A service composition
combines services follow-
ing a certain composi-
tion pattern to achieve a
business goal, solve a
scientific problem, or
provide new service
functions in general. Service compositions may
themselves become services, making composition a
recursive operation. Service composition provides a
mechanism for application integration that seam-
lessly supports cross-enterprise (business-to-busi-
ness) and intra-enterprise application integration.

To support the SOC architecture, Web services
must provide standards-based definitions of an
interoperability communication protocol, mecha-
nisms for service description, discovery, and com-
position as well as a basic set of quality of service
(QoS) protocols. The initial trio of Web services
specifications, SOAP, WSDL and UDDI, provided
open XML-based mechanisms for application inter-
operability, service description, and service discov-
ery. For a detailed look at these specifications and
how they fit together, see [3]. SOAP is now a W3C
standard, and WSDL and UDDI are being consid-
ered by standard bodies.

T
o move beyond this basic framework
(“describe, publish, interact”) mecha-
nisms for service composition and qual-
ity of service protocols are required.
Several specifications have been pro-

posed in these areas, most notably the Business
Process Execution Language for Web Services
(BPEL4WS) [1] for service composition, Web ser-
vices coordination (WS-Coordination) [10] and
Web services transactions (WS-Transaction) [11] to
support robust service interactions, Web services
security (WS-Security), and Web services reliable
messaging (WS-ReliableMessaging). All these

aspects are critical elements of meaningful business
interactions. The descriptive capabilities of WSDL
are enhanced by the Web Services Policy Frame-
work (WS-Policy), which extends WSDL to allow
the encoding and attachment of QoS information
to services in the form of reusable service “policies.”
It is important to note that the Web services stack
(see Figure 1) is designed modularly, allowing one
to use only the pieces of the stack required in a par-

ticular setting; for exam-
ple, one may use a local
proprietary registry to
find Web services.

Here we focus on the
problem of creating ser-
vice compositions and
review how three speci-
fications, BPEL4WS,
WS-Coordination, and
WS-Transaction, sup-
port creating robust
service compositions.
BPEL4WS (or BPEL for
short) provides a mecha-
nism for defining service

compositions in the form of choreographies of Web
services; a choreography consists of the aggregation
of services according to certain business rules. WS-
Coordination and WS-Transaction complement
BPEL to provide mechanisms for defining specific
standard protocols for use by transaction process-
ing systems, workflow systems, or other applica-
tions that wish to coordinate multiple Web
services. We describe the key aspects of each speci-
fication and finally explain how the three fit
together to provide a framework for composing
and coordinating distributed Web services.

Service Composition

B
PEL defines a language for creating ser-
vice compositions in the form of busi-
ness processes and is now being
standardized by the Organization for the
Advancement of Structured Information

Standards (OASIS). Overviews and comparisons of
several proposed Web services-based business
process modeling standards have been presented at
www.ebml.org and [12].

The Nature of BPEL Compositions. BPEL sup-
ports a process-oriented form of service composi-
tion: each BPEL composition is a business process
or workflow that interacts with a set of Web services
to achieve a certain goal. BPEL compositions are
thus called processes; the services the process inter-

BPEL4WS

WSDL, Policy, UDDI, Inspection

Reliable
Messaging

Security
Transactions

Business
Processes

Description

Quality
of Service

Transport
and

Encoding

Coordination

Other protocols
Other services

SOAP (Logical Messaging)

XML, Encoding

Figure 1. The Web services
stack.

www.manaraa.com

acts with are called partners. A process, like any
Web service, supports a set of WSDL interfaces that
enable it to exchange messages with its partners.
The process interacts with them by invoking the
operations they support and receiving messages
through the process service interface. Figure 2 illus-
trates one such set of interactions. Observe that in
this model, the constituent services (partners) are
external to the composition itself.

The interaction between
a BPEL composition and its
partners is assumed to be, in
the general case, a peer-to-
peer conversational one in
which each party invokes
operations on (or sends mes-
sages to) the public inter-
faces of the other. This
general model covers the
more traditional partner
roles found in client/server
environments: certain
(client) applications may only use the process as a
service without offering any function themselves,
while others are simply used (invoked) by the
process as utility services.

Defining Business Protocols. The core of a
BPEL process composition is thus the definition of
the message exchanges that take place between the
process and each one of its partners. First, partners
are defined in a BPEL process by declaring the
WSDL interfaces over which the interaction with
each partner will take place, including both the
interfaces supported by the partner and by the
process. To achieve the goal of providing multi-
protocol access to a service, WSDL separates
abstract service descriptions (interfaces and mes-
sages) from specific deployments of the service [3].
Only abstract interfaces are used in the partner def-
initions, which makes BPEL compositions plat-
form-and transport-independent: the same BPEL
process may be accessed over standard SOAP over
HTTP, as well as, say, J2EE protocols such as IIOP
and JMS [8].

Once the process partners are defined, a set of
primitive activities are used to define how messages
are exchanged with each partner. A message is sent
to a partner using an invoke activity; the process can
wait for a process operation to be invoked by some
external client using the receive activity; the
response of an input-output operation is sent back
using the reply activity. In addition, BPEL provides
other primitive activities to perform actions such as
signaling faults, terminating the process execution,

and manipulating data.
These primitive activities can then be combined

into complex algorithms using the structured activ-
ities provided in the language. These are the ability
to define an ordered sequence of steps (sequence),
to have conditional branching (switch), to define a
loop (while), to execute one of several alternative
paths (pick) and to indicate that a collection of steps
should be executed in parallel (flow). Within activ-

ities executing in parallel,
execution order constraints
can be specified by defining
control links between the
activities. All structured
activities can be recursively
combined.

To maintain the state of
an interaction BPEL uses a
mechanism called message
correlation. Key fields
within the data messages
are identified that will be
used to correlate messages
received from a partner to a
particular conversation. For
example, in an order fulfill-
ment system, the invoice
number may be used to

identify the conversation between the process and
one of its partners. The stateful nature of business
interactions is thus naturally captured by business
data fields, as opposed to middleware and system-
generated artifacts.

Correlation-based stateful interactions map quite
naturally into an “instance-oriented” process life-
cycle model. Unlike in traditional object systems,
process instances are not created via a factory or ref-
erenced using an explicit instance identifier.
Instead, some of the messages sent to a BPEL
process implicitly lead to the creation of a new
process instance; a set of correlation fields is then
initialized that will allow the location of the process
instance in subsequent interactions. Note that a
process may have more than one set of correlation
fields: different correlation sets may be used for each
partner of the process; moreover, the interaction
with each partner may rely on different correlation
sets at different times.

Fault Handling and Compensation. BPEL pro-
vides extensive support for dealing with errors,
through the use of fault and compensation handlers.
Fault handlers provide a structured model to deal
with errors occurring within the process; the model
is similar to “try-catch” blocks in Java, but results in

COMMUNICATIONS OF THE ACM October 2003/Vol. 46, No. 10 31

Process
WSDL

Partner B
Partner A

WSDL B WSDL A

Figure 2. A BPEL process
interacting with two partners:
black circles are activities;
black arrows are control
links; other arrows illustrate
message exchanges.

www.manaraa.com

significant simplification of the process modeling
required to handle faults [2, 4]. Fault handling is
closely tied in BPEL to the notion of compensation.
Compensation [5, 6, 9] is a
common technique used to
“undo” the effects of actions
that have already been com-
pleted (such as canceling a
prior completed flight book-
ing in a travel reservation
process). A process designer
defines the compensating
actions to be performed
should an error occur in the
course of executing the pri-
mary process. Hence, com-
pensation handlers are
typically invoked by a fault
handler. The units of fault
handling and/or compensa-
tion in BPEL processes are
called scopes. If a fault
occurs in a scope, all activities are disabled and the
fault is either handled or thrown to the enclosing
scope. Completed scopes nested within a faulting
one are compensated in reverse order of comple-
tion. The BPEL compensation model is closely
related to the protocols defined by the WS-Transac-
tion specification, presented later.

Service Composition Using BPEL4WS,
WS-Coordination, and WS-Transaction

W
S-Coordination and WS-Transac-
tion are two specifications that
address the reliable, transactional
coordination of Web services.
They can be used individually, or

in combination with BPEL. Each of these specifica-
tions has a well-defined purpose in the context of
robust service compositions:

• BPEL allows a set of existing Web services to be
composed into a new Web service using well-
defined process modeling constructs;

• WS-Coordination is a general framework for
implementing specific coordination types, where
the coordination of Web services requires a
shared context; and

• WS-Transaction defines two particular coordina-
tion types for (short-running) atomic transac-
tions and (long-running) business transactions.

The combined use of these three specifications
allows the BPEL composition model to be extended

with distributed coordination capabilities. The
fault and compensation handling relationship
between BPEL scopes can be expressed as a WS-

Coordination coordina-
tion type, and distributed
BPEL implementations
can register for fault han-
dling and compensation
notifications using the
coordination framework.
WS-Coordination defines
the coordination context
for use in environments
where BPEL scopes are dis-
tributed or span different
vendor implementations; a
context that is understood
across the participants
(BPEL implementations)
is required in such envi-
ronments. The use of the
Business Activity coordi-
nation type defined in the
WS-Transaction specifica-
tion for coordinating
nested BPEL scopes is also
described in [1]. Figure 3
illustrates these two uses of

WS-Coordination/WS-Transaction to implement
distributed BPEL process coordination and the
coordination of nested BPEL scopes.

WS-Coordination and WS-Transaction

W
S-Coordination and WS-Transac-
tion address the problem of coor-
dinating multiparty service
interactions. The rationale behind
WS-Coordination is to provide

generic coordination mechanisms that can be
extended for specific coordination protocols. Such
coordination includes the execution of short-run-
ning transactions within an organization (similar to
traditional distributed transactions) and long-run-
ning transactions across organizations. WS-Trans-
action defines two such specific coordination
protocols for atomic (short-running) and business
(long-running) transactions. Another notable spec-
ification in this area is the Business Transaction Pro-
tocol (BTP), described in [7].

WS-Coordination. WS-Coordination defines a
framework that supports the notion of pluggable
coordination models, similar to frameworks for
extended distributed object transactions like the
OMG/J2EE Activity Service for Extended Transac-

32 October 2003/Vol. 46, No. 10 COMMUNICATIONS OF THE ACM

WSDLWSDL

KEY:

Fault/Compensation
handler and WS-C/T
x implementation

WS-C/TX messages

Client

CC

C

C

C

Figure 3. Using
WS-Coordination/
WS-Transaction to
coordinate BPEL Web
services and nested
BPEL scopes.

www.manaraa.com

tions (JSR 95). The proposed approach to imple-
menting a specific coordination model is to extend
the mechanisms provided by WS-Coordination.

Specific coordination and transaction models are
each represented as a coordination type supporting
a set of coordination protocols; a coordination pro-
tocol is the set of well-defined messages that are
exchanged between Web services participants.
Coordination protocols such as completion proto-
cols, synchronization protocols, or outcome notifi-
cation protocols address the problem of correct
execution of a set of distributed activities to reach a
consistent, defined outcome.

The WS-Coordination framework defines three
main elements commonly required by different
coordination models:

• A CoordinationContext, the shared, extensible
context representing the coordination that is
propagated to the distributed participants;

• An Activation service, the service used by clients
to create a coordination context; and

• A Registration service, the service used by partic-
ipants to register resources for inclusion in spe-
cific coordination protocols.

The Activation service and the Registration ser-
vice are generic. Together with the set of services
that represent the specific coordination protocols
for a given coordination type, they make up a Coor-
dination service (or coordinator for short).

In order to coordinate a set of Web services, the
coordination client starts the coordination by send-
ing a request message to the Activation service of a
chosen coordinator. A CoordinationContext is then
created by the Activation service. The Coordina-
tionContext contains a global identifier, expiration
data, the port reference for the Registration service,
and can also be extended to include other informa-
tion relevant to specific coordination protocols
(such as an isolation level element for an atomic
transaction). The port reference is a WSDL defini-
tion type that is used to identify an individual port;
it consists of the URI of the target port as well as
contextual information that may include service-
specific instance data.

Whenever the client initiates an invocation on a
Web service, the CoordinationContext must be
propagated along with the application message
(WS-Coordination implementations can be used to
append the context to the application message).
The service being invoked can then find out about
the Registration service’s port reference (contained
in the context) to register for the coordination pro-

COMMUNICATIONS OF THE ACM October 2003/Vol. 46, No. 10 33

WEB SERVICES ARE

MOVING FROM THEIR

INITIAL “DESCRIBE,
PUBLISH, INTERACT”
CAPABILITY TO A NEW

PHASE IN WHICH ROBUST

BUSINESS INTERACTIONS

ARE SUPPORTED.

▲

www.manaraa.com

tocol that it wishes to participate in; it can either
directly register with the client’s coordinator, or use
another (local) coordinator, and have the coordina-
tor register with the client’s coordinator (see [11]
for an example in the context of atomic transac-
tions).

WS-Transaction: Atomic Transactions and
Business Activities. WS-Transaction leverages WS-
Coordination by defining two particular coordina-
tion types: “Atomic Transaction (AT)” and
“Business Activity (BA).” ATs model short-running
atomic transactions; BAs model business transac-
tions that are potentially long-lived.

ATs compare to traditional distributed transac-
tions. The AT coordination type supports the prop-
erty of atomicity (“all-or-nothing” with respect to
the execution of distributed Web services opera-
tions) based on the premise that the data resources
manipulated by service operations can be held. The
coordination type correspondingly comprises pro-
tocols common to atomic transactions, including
the two-phase commit protocol.

The BA coordination type supports transactional
coordination of potentially long-lived activities.
BAs do not require resources to be held, but busi-
ness logic to be applied to handle exceptions. Par-
ticipants are viewed as business tasks that are
children to the BA for which they register. The par-
ticipant list is dynamic (a participant may choose to
leave a transaction) and participants are loosely-
coupled. Unlike in the more tightly coupled two-
phase commit protocol, a BA participant may also
declare its outcome before being solicited to do so.

Conclusion

T
he Web services framework has emerged
to address the movement toward service-
oriented computing, where applications
are offered as services both within and
across enterprises. Aiming to leverage

the heterogeneity of the IT landscape, its key
enabler is in the definition of a modular technology
stack based on open, XML-based standards. As the
technology continues to evolve, a number of speci-
fications are being proposed to address the areas
necessary to support SOC, such as security, reliabil-
ity, and service composition. The specifications pre-
sented here demonstrated how Web services are
moving from their initial “describe, publish, inter-
act” capability to a new phase in which robust busi-
ness interactions are supported.

SOC is still in the early stages of development;
fully dynamic business interactions following the
SOC model are not foreseen in the immediate

future. The specifications presented here, however,
are important milestones on the way toward a com-
plete standards-based framework to support service
orientation. Other specifications are already filling
in the remaining gaps and industry support is
slowly consolidating behind a set of basic standards.
Over the next few years, we will likely see the
deployment and adoption of the full SOC model by
business and scientific communities.

References
1. Business Process Execution Language for Web Services, version 1.1.;

www.ibm.com/developerworks/library/ws-bpel/.
2. Curbera, F., Khalaf, R., Leymann, F., and Weerawarana, S. Exception

handling in the BPEL4WS language. In Proceedings of the Interna-
tional Conference on Business Process Management, BPM 2003 (Eind-
hoven, The Netherlands, June 2003).

3. Curbera, F. et al. Unraveling the Web services Web: An introduction
to SOAP, WSDL, and UDDI. IEEE Internet Computing 6, 2
(Mar./Apr. 2002).

4. Hagen, C. and Alonso, G. Flexible exception handling in the OPERA
process support system. In Proceedings of the International Conference
on Distributed Computing Systems (ICDS 98), 526–533.

5. Leymann, F. Supporting business transactions via partial backward
recovery in workflow management systems. In Proceedings of BTW
'95, Springer-Verlag, Berlin, 1995.

6. Leymann, F. and Roller, D. Production Workflow. Prentice Hall,
2000.

7. Little, M. Transactions and Web services. Commun. ACM 46, 10
(Oct. 2003).

8. Mukhi, N., Khalaf, R., and Fremantle, P. Multi-protocol Web ser-
vices for enterprises and the grid. In Proceedings of EuroWeb ‘02
(Oxford, UK, December 2002).

9. van der Aalst, W. and van Hee, K. Workflow Managment: Methods,
Models, and Systems. MIT Press, 2002.

10. Web Services Coordination (WS-Coordination) 1.0; www-
106.ibm.com/developerworks/library/ws-coor.

11. Web Services Transaction (WS-Transaction) 1.0; www-
106.ibm.com/developerworks/library/ws-transpec.

12. Workflow Patterns, Standard Evaluation. Technische Universiteit
Eindhoven; tmitwww.tm.tue.nl/research/patterns/standards.htm.

Francisco Curbera (curbera@us.ibm.com) is a research staff
member at IBM Research in Hawthorne, NY.
Rania Khalaf (rkhalaf@us.ibm.com) is a software engineer at
IBM Research in Hawthorne, NY.
Nirmal Mukhi (nmukhi@us.ibm.com) is a software engineer at
IBM Research in Hawthorne, NY.
Stefan Tai (stai@us.ibm.com) is a research staff member at IBM
Research in Hawthorne, NY.
Sanjiva Weerawarana (sanjiva@us.ibm.com) is a research
staff member at IBM Research in Hawthorne, NY.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2003 ACM 0002-0782/03/1000 $5.00

c

34 October 2003/Vol. 46, No. 10 COMMUNICATIONS OF THE ACM

